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Abstract
Finding better therapies for the treatment of brain

tumors is hampered by the lack of consistently obtained

molecular data in a large sample set and the ability to

integrate biomedical data from disparate sources

enabling translation of therapies from bench to

bedside. Hence, a critical factor in the advancement of

biomedical research and clinical translation is the ease

with which data can be integrated, redistributed, and

analyzed both within and across functional domains.

Novel biomedical informatics infrastructure and tools

are essential for developing individualized patient

treatment based on the specific genomic signatures in

each patient’s tumor. Here, we present Repository of

Molecular Brain Neoplasia Data (Rembrandt), a cancer

clinical genomics database and a Web-based data

mining and analysis platform aimed at facilitating

discovery by connecting the dots between clinical

information and genomic characterization data. To date,

Rembrandt contains data generated through the

Glioma Molecular Diagnostic Initiative from 874 glioma

specimens comprising f566 gene expression arrays,

834 copy number arrays, and 13,472 clinical phenotype

data points. Data can be queried and visualized for a

selected gene across all data platforms or for multiple

genes in a selected platform. Additionally, gene sets can

be limited to clinically important annotations including

secreted, kinase, membrane, and known gene-anomaly

pairs to facilitate the discovery of novel biomarkers

and therapeutic targets. We believe that Rembrandt

represents a prototype of how high-throughput

genomic and clinical data can be integrated in a way

that will allow expeditious and efficient translation

of laboratory discoveries to the clinic.

(Mol Cancer Res 2009;7(2):157–67)

Introduction
Primary brain tumors are a leading cause of cancer mortality

in adults and children in the United States (1). The molecular

and genetic heterogeneity of gliomas undoubtedly contributes

to the varied and often suboptimal response to treatment that is

usually predicated on standard pathologic diagnoses. Improve-

ment in the prognosis of patients with gliomas will likely come

about through the use of new targeted therapies based on the

biological knowledge of the tumors at a molecular level.

To identify glioma-specific targets, consistent molecular

characterization of a large number of tumors is required. To

date, all the studies published have limitations due to

incomplete coverage of whole-genome expression due to the

usage of small or outdated, legacy, microarray platforms (2, 3),

limited number of samples studied and/or incomplete inclusion

of various different glioma subtypes and grades (4, 5), or the

narrow scope of targets being investigated. Thus, we have put

together a national, publicly funded effort that we call the

Glioma Molecular Diagnostic Initiative (GMDI), which,

coupled with its bioinformatics counterpart, Repository of

Molecular Brain Neoplasia Data (Rembrandt), is designed to

breach the gap of biological information related to primary

brain tumors to help patients receive a better, biologically

oriented therapy tailored to their specific needs.

Rembrandt is a powerful and intuitive informatics system

designed to integrate genetic and clinical information for

improved research, disease diagnosis, and treatment (as shown

in Fig. 1). The platform supports clinical genomic research and

(as data are collected and analyzed) will create a knowledge

base that allows physicians to predict clinical outcomes and

therapeutic efficacy based on an individual’s clinical and

genetic profiles, thereby enabling personalized medicine.

To support discovery, the Rembrandt platform also allows

researchers to search, import, and aggregate additional data

from internal and external databases (such as GenBank,

University of California at Santa Cruz golden path data sets,

and Biocarta pathways), analyze the combined data sets to

identify meaningful patterns (including specific chromosomal
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abnormalities), and share their research with other physicians

and researchers within their own institution or in other physical

locations. Each user is assigned a specific role that governs how

much of the study data are accessible. A series of intuitive tools

enable users to easily analyze and interact with the integrated

data to achieve greater insight into molecular signatures that

characterize each tumor and correlate with clinical outcome.

Unlike many biomedical database systems, Rembrandt is a

fully integrated platform that supports multiple facets of clinical

and molecular research, discovery, and hypothesis generation.

This shared environment crosses many disciplines including

genetic research and clinical care. As such, the platform should

serve to foster cooperation and integration between research and

clinical disciplines and expedite the time and increase the depth to

whichmolecular data become relevant to the clinical environment.

Materials and Methods
Glioma Molecular Diagnostic Initiative

Sample Acquisition and Diagnosis. To better understand the

genetic pathogenesis of gliomas and begin to identify potential

glioma-specific molecular therapeutic targets, consistent mo-

lecular characterization of a large number of tumors is required.

This process was undertaken under a national prospective

clinical trial that would eventually be institutional review board

approved both within the National Cancer Institute intramural

program and through both Cancer Therapy Evaluation

Program-sponsored adult brain tumor consortia (NABTT and

NABTC protocol 01-07). With the activation of this study,

we collected matched tumor, blood, and plasma from the 14

contributing institutions (NIH, Henry Ford Hospital, Thomas

Jefferson University, University of California at San Francisco,

H. Lee Moffitt Hospital, University of Wisconsin, University of

Pittsburgh Medical Center, University of California at Los

Angeles, The University of Texas M. D. Anderson Cancer

Center, Dana-Farber Cancer Center, Duke University, Johns

Hopkins University, Massachusetts General Hospital, and

Memorial Sloan Kettering Cancer Center). All tissues collected

are sent to the Neuro-Oncology Branch laboratory for

processing. The samples were provided as snap-frozen sections

of areas immediately adjacent to the region used for the

histopathologic diagnosis. Initial histopathologic diagnosis is

done at the tissue collecting institution following the WHO

standards (6). The initial diagnosis is reviewed by in-house

neuropathologists to assure a measure of consistency across

samples. To date, 874 complete frozen sample sets have been

accrued, of those 389 are glioblastoma multiformes, 122 are

astrocytomas, 113 are oligodendrogliomas, and 33 are mixed,

with the reminder still unclassified.

FIGURE 1. Data integration via the Rembrandt discovery platform.
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Clinical data on the patients are collected prospectively until

the patient’s death through the NABTC Operations Office at

The University of Texas M. D. Anderson Cancer Center and

the NABTT Operations office at the Johns Hopkins University.

The clinical data collected are updated into the Rembrandt

database on a quarterly basis.

To assure consistency in the collection, shipment, process-

ing, assaying, storage, data retrieval, and dissemination, we

have put together a series of standard operating procedures that

have resulted in a streamlined, high-throughput operation

capable of handling large numbers of samples in a consistent,

operator-independent fashion. Consistency of data over time is

continuously monitored by looking for any signs of batch effect

in the analyses.

mRNA Extraction and Gene Expression Data Processing.

Tissue (f50-80 mg) from each tumor was used to extract total

RNA using the Trizol reagent (Invitrogen) following the

manufacturer’s instructions. The quality of RNA obtained was

verified with the Bioanalyzer System (ref. 7; Agilent Technol-

ogies) using the RNA Pico Chips. RNA (5 Ag) extracted

from the accrued samples has been processed using U133 2 Plus

mRNA expression chips (Affymetrix), which contains >54,000

probe sets analyzing the expression level of >47,000 transcripts

and variants, including 38,500 well-characterized human genes.

All arrays were confirmed to be within an acceptable minimal

quality-control according to internal standard operating proce-

dure variables following these criteria: (a) A scaling factor of

<5 when the expression values are scaled to a target mean signal

intensity of 500. (b) Signal intensity ratios of the 3¶ to 5¶ end of

the internal control genes of h-actin and GAPDH < 3. (c)

Affymetrix spike control (BioC, BioDN, and CreX) are always

present, and percentage present calls is >35% for brain tissue.

The .cel and .txt files of all the arrays that passed the

minimal quality-control were input into dChip for normaliza-

tion. The model-based expression index algorithm implemented

in dChip selects an invariant set with a small within-subset rank

difference to serve as basis for adjusting the brightness of the

arrays to a comparable level. The normalization was done at the

PM and MM probe levels, and model-based expression levels

were calculated using normalized probe level data. We choose

the average difference model (PM > MM) to compute

expression values; negative average differences were truncated

to 1 or log-transformed values of zeros to flag negative signal

intensities with no biological meaning.

For data preprocessing, probe-level data were consolidated

into probe-set data using the Affymetrix MAS5 algorithm,

with the target scaling value at 500. Probe-level data were

also processed with custom Chip Definition Files (1) that

rearranged Affymetrix probes into gene-based probe sets.

Probes mapped to alternatively spliced exons were grouped

into distinct probe sets. Most 3¶ probes were selected for

processing. Nonspecific probes were masked before processing.

Single tumor samples were compared with the nontumor

pool and the sample average to the nontumor pool. Samples

were averaged based on tumor subtypes in six categories:

glioblastoma multiforme, oligodendroglioma, astrocytoma,

mixed, unclassified, and unknown tumors. Group comparisons

were done in R with two sample t tests. Signal values were first

transformed to logarithm (base 2). The averages of the log2
signals of tumor and nontumor groups were computed. The

magnitude of the differences between the geometric means of

expression levels for each reporter from the two groups was

computed. The significance of the differences between tumors

(or each tumor subtype) and nontumor samples for each

reporter was also evaluated.

For each individual tumor sample, signals for each tumor

and the ratio between each tumor and the average of normal

(geometric means, computed the same way as described above)

FIGURE 2. A. Gene expression box plot for BMPR1B. Samples are categorized by histologic type. Different Affymetrix probe sets are shown as different
color bars. B. BMPR1B probe set in Affymetrix probe-set viewer. Information for selected probe set can be displayed, allowing the user to decide on the
quality of information retrieved. C. BMPR1B probe set of interest showing outliers in glioblastoma multiforme samples. The ability to display expression
graphs in different formats allows the use to gain a wealth of information without having to redo the queries.
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were computed. All processes were done separately for various

data groups (public data and institution-based data).

DNA Extraction and Genomic Alteration Analysis. Tissue

(f10 Ag; as recommended by the manufacturer) from each

tumor was used to extract high molecular weight, genomic

DNA using QIAamp DNA Micro DNA extraction kit (Qiagen)

following the manufacturer’s instructions. The quality of DNA

was checked by electrophoresis run in a 2% agarose gel.

Genomic DNA (250 ng) from samples received has been

hybridized to 100K single nucleotide polymorphism chips

(ref. 8; Affymetrix), which covers 116,204 single nucleotide

polymorphism loci in the human genome with a mean

intermarker distance of 23.6 kb. These arrays give two

simultaneous data types: allelic calls and signal intensity,

allowing for the determination of both copy number alterations

and regions of allelic imbalances (loss of heterozygosity). Calls

were determined by the GTYPE software version 3.0 with 25%

level of confidence. Only samples with call rates of >90% were

accepted for any analysis.

Clinical Data Processing. The University of Texas M. D.

Anderson Cancer Center serves as the operating center for

clinical data collection for the GMDI trial. Clinical data reports

from the case report forms were accessed through the Data

Management Initiative Web portal at The University of Texas

M. D. Anderson Cancer Center, parsed, and uploaded to the

Rembrandt data warehouse after various preprocessing and data

validations steps. The clinical data collected are updated into

the Rembrandt database on a quarterly basis.

Results
A Rembrandt Storyboard

To exemplify the powerful integration that Rembrandt

provides to analyze a large data set of both molecular and

clinical data, we would like to show how one could come about

to explore the validity of a scientific hypothesis using the

system.

Suppose that one would have come across two publications

on Glioma Tumor Stem Cells that mentioned the irregular

expression of BMPR1B in such cells (9, 10).

A typical Rembrandt usage scenario might be to ask if

BMPR1B is a potential therapeutic target as it has been recently

been postulated to be involved in cell differentiation. To answer

this question, a researcher can take a stepwise workflow

approach in Rembrandt as shown in Figs. 2 and 3.

1. Explore the expression levels of BMPR1B in different

subtypes of glioma. Analysis of the box plots in Rembrandt

(Fig. 2A) indicates that probe-set 210523_at is differentially

expressed in glioblastoma multiformes when compared with

nontumors (borderline significance: P < 0.04).

2. Where does this probe map onto the transcripts of

BMPR1B? Review of probe mapping in Affymetrix probe

viewer integrated into Rembrandt (Fig. 2B) shows that this

probe maps to coding region.

3. Are there two subpopulations of BMPR1B regulating

samples? Review of the ‘‘box and whisker’’ plot in

Fig. 2C indicates that glioblastoma multiformes have

low-end outliers for BMPR1B expression.

4. Now, can we identify samples that show high (up >2) and

low (down <1.5) expression of BMPR1B? Advanced

queries can be set up in the Rembrandt application to create

sample sets with separate up-regulation and down-regulation

criteria for BMPR1 expression.

5. Does BMPR1 up-regulation affect survival? Can this sample

group be compared with the rest of the gliomas? Figure 3A

shows the difference in probability of survival between

BMRP1 up-regulating group and the rest of the gliomas.

Results indicate that BMPR1B up-regulation is bad as a

prognostic factor and could be a good target for therapy.

6. How different are these sample groups beyond BMPR1B

expression? By analyzing the whole gene expression

patterns in both groups using the high-order analysis tool

of principal component analysis (PCA; Fig. 3B), it is

possible to see that BMPR1B overexpressors and under-

expressors are indeed quite different at a global expression

level, suggesting that this gene may hold a key to glioma

diversity.

The storyboard here presented indicates that Rembrandt can

effectively be used to test in silico a scientific hypothesis and

allow for additional experimentation to occur. In fact, this has

been the case with the scenario here presented and we have

shown that BMPR1B is able in fact to modulate the

tumorigenic potential of glioma cells (11). Additionally, a

Rembrandt search of newly identified (NF1) and well-known

(IGFBP2) targets of deregulation in gliomas shows that the

result produced by our data set are concordant with the current

knowledge of clinical features (Supplementary Fig. S1).

Key Features in Rembrandt
Integrating Genome Characterization Data with Clinical
Outcomes

Users can query gene expression or copy number data and

graph changes in survival rate at each time point in the

study. Kaplan-Meier estimates are calculated based on the last

FIGURE 3. A. Kaplan-Meier survival plot showing survival comparing BMRP1 up-regulating samples and the rest of the gliomas in the database. This plot
allows the identification of putative clinically relevant genes to explore as new targets for therapy. Users can query gene expression and graph changes in
survival rate at each time point on the study. Kaplan-Meier estimates are calculated based on the last follow-up time and the censor status (0, alive; 1, dead)
from the samples of interest. Kaplan-Meier estimates are then plotted against the survival time. Users can dynamically modify the fold change (up-regulation
and down-regulation) thresholds and redraw the plot. A log-rank P value is provided as an indication of significance of the difference in survival between any
two groups of samples segregated based on gene expression of the gene of interest. B. Performing PCA and correlating with clinical data. An example of
PCA report from the Rembrandt application. These two-dimensional (top ) and three-dimensional (bottom ) graphs plot the various principal components from
the gene expression PCA. Various analysis options are provided to the user to select from an array of gene/reporter filtering and sample selection settings.
Users can select samples in the two-dimensional plot to retrieve related clinical information on the selected patients.
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follow-up time and the censor status (0 = alive, 1 = dead) from

the samples of interest. Kaplan-Meier estimates are then plotted

against survival time (Fig. 3A). The points that correspond to

the events with a censor status of 0 are indicated on the graph.

Users can dynamically modify the fold change (up-regulation

and down-regulation) thresholds and redraw the plot. A log-

rank P value is provided as an indication of significance of the

difference in survival between any two groups of samples

segregated based on gene expression of the gene of interest.

The log-rank P value is calculated using the Mantel-Haenszel

procedure (12). P values are recalculated every time a new

threshold is selected. Users can toggle to a unified gene

expression view with lesser reporters to get a gene-based view

of the expression data. To obtain the unified gene expression

values, the probe-level data are processed with custom Chip

Definition Files that rearrange Affymetrix probes into gene-

based probe sets. Probes mapped to alternatively spliced exons

are grouped into distinct probe sets. Most 3¶ probes are selected
for processing. Nonspecific probes are masked before process-

ing. Similar to Kaplan-Meier plots for differential fold change

analysis, Kaplan-Meier plots can be drawn for copy number

data where genes are mapped to single nucleotide polymor-

phism probe sets by aligning the probe’s physical position to

aligned mRNA sequences plus 50 kb upstream and downstream

for maximum coverage. Also, Kaplan-Meier plots can be drawn

by selecting two patient groups of interest. These groups can be

user-defined or predefined lists of patients.

Performing Higher-Order Statistical Analysis on Genomic
and Clinical Data Set

Rembrandt supports computer-intensive, high-memory

utilizing tasks such as higher-order gene expression analyses

(such as class comparison, clustering, and PCA), where the data

sets could be as large as 4 GB with an analytic cluster to allow

for several simultaneous analytic jobs.

Figure 3B shows an example of a PCA report from the

Rembrandt application. This two-dimensional graph plots the

various principal components from the gene expression PCA.

Various analysis options are provided from which users can

select gene/reporter filtering and sample selection settings. Users

can click on the three tabs at the top of the graph to display PC1

versus PC2, PC1 versus PC3, or PC2 versus PC3. Each point on

the graph represents a sample. The samples are colored by

disease type. Users can click on the link on the top left-hand

corner of the graph to color by gender. Patients with different

survival ranges are indicated by different shapes on the graph.

Users can select samples of interest by clicking on the graph and

drawing a rectangle around samples to save them for future use.

GenePattern Link
Broad’s GenePattern (13) combines a powerful scientific

workflow platform with >90 computational and visualization

tools for the analysis of genomic data. To expand a researcher’s

ability to analyze the glioma data sets, Rembrandt has been

seamlessly integrated with GenePattern. Shown in Fig. 4A is an

expression heat map of 50 additional genes that have expression

patterns related to stem cell factor (14) in glioblastoma

multiforme.

Plotting Copy Number Data from Patient DNA Samples
against Genomic Location

Scatter plots (shown in Fig. 4B) display measured copy

number against the physical genome location in an application

called webGenome, which has been integrated with Rembrandt.

These plots are context sensitive to the copy number reports

generated from the copy number queries in the Rembrandt

application. Users can view data at arbitrary resolutions from

the entire genome on down. When users move the mouse over

specific probes, the system provides mouse-over probe names.

Clicking on the name of an experiment or bioassay in the plot

legend will highlight the corresponding data.

Advanced Query and Report Interfaces
Biomedical researchers struggle to meaningfully integrate

their findings across multiple data types. Cancer is a

complex disease requiring genomic, proteomic, pathology,

imaging, and clinical data for a true understanding of the

scope of the problem. Advanced query interfaces (as shown

in Fig. 5) in Rembrandt enable this meaningful integration

across data types. It allows users to mine the Rembrandt

database using various genomic and clinical criteria. These

queries can be combined to arrive at reports (shown in Fig. 6)

that integrate data from various data domains, such as gene

expression, copy number analysis, and clinical trials. Several

filtering and data download options are presented in Rembrandt

reports.

Rembrandt System Architecture
Rembrandt was developed using a n-tier architecture. The

system was developed using Java 2 Enterprise Edition, a hybrid

star data warehouse schema and various open source technol-

ogies. The back end consists of an Oracle 10g database for

storing precomputed microarray differential expression, com-

puted copy number, clinical data, and user security information.

For performance reasons, normalized gene expression data used

by the real-time analysis module are stored as R-binary files.

The middle tier, which handles application logic and core

functionality, was developed using Java and cancer Biomedical

Informatics Grid software development and compatibility

guidelines (15). Rembrandt application consists of standard

interfaces that enable integration with third-party tools such as

caArray, webGenome, and GenePattern. Rembrandt has an

Analytical Server that provides on-the-fly computational

FIGURE 4. A. Heat-map view in GenePattern. Subsets of data from Rembrandt can be transferred to GenePattern using standard interfaces to invoke
several run-time data analysis capabilities. A heat map for 50 neighbors of stem cell factor is shown for astrocytoma and mixed glioma samples in
Rembrandt. B. Scatter plot for copy number data across physical genomic locations. Scatter plots display measured copy number against physical genome
location in an application called webGenome, which has been integrated with Rembrandt via standard data interfaces. These plots are context sensitive to
the copy number reports generated from the copy number queries in the caIntegrator application. Users can view data at arbitrary resolutions from the entire
genome on down.
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analysis capability. The Analytical Server communicates

asynchronously with Rembrandt’s middle tier via the Java

Messaging Service. Java Messaging Service allows Rembrandt

to abstract the statistical packages being used for heavy

computational tasks.

Rembrandt Cancer Biomedical Informatics Grid Service
Basic and clinical research has increasingly become

dependent on advanced information technologies for manage-

ment, exchange, and analysis of diverse biomedical data.

Although a wealth of information is collected by the cancer

research community, any one given researcher is faced with

challenges in discovering, extracting, and analyzing the

information relevant to his/her research. To address this need,

the National Cancer Institute has initiated a national-scale

effort, called the cancer Biomedical Informatics Grid, to

develop a federation of interoperable research information

systems. At the heart of the cancer Biomedical Informatics

Grid approach to federated interoperability effort is a Grid

middleware infrastructure, called caGrid (16). caGrid Data

Services provide the means to share data via the caGrid

federated infrastructure. One of the major goals of the current

release of Rembrandt was to create a clinical genomic object

model and expose the domain model through a caGrid data

service. The purpose of the object model is to help capture the

relationships between the clinical study and its associated

experimental observations. The Rembrandt caGrid service

can be used to obtain programmatic access to public data

in Rembrandt in a federated fashion and can be found at http://

caintegrator.nci.nih.gov/wsrf-rbt/services/cagrid/Rembrandt

GridService.

Conclusion
Large-scale data sets from genomics, proteomics, popula-

tion genetics, and imaging are driving research at a previously

unprecedented pace. Bioinformatics data management pro-

viders must serve these data sets in a usable way that helps

find the needle in a haystack effectively and accurately. The

goal of the ‘‘omic’’ sciences is not to generate numbers but

rather ‘‘insight.’’ The Web interfaces are burdened with

displaying terabytes of data in ways that physician scientists

can comprehend and use the results to develop hypothesis for

FIGURE 5. User-friendly data query interface. Query pages enable users to restrict their searches in the database to specific genomic and/or clinical
criteria.

FIGURE 6. Gene expression fold report. All reports in Rembrandt are fully customizable at the report window, making it unnecessary to re-run queries to
refine the results.
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their next study or trial. Ultimately, we feel that information

must be standardized, integrated, and made available at the

point of care to help patients and physicians make optimal

decisions.

Tools such as Rembrandt have primarily focused on the

usability aspect of high-throughput heterogeneous data and

yet enabling power users and bioinformaticians to tap into

runtime analysis tools such as gene pattern or use the

programmatic interfaces that are provided via the caGrid

service. From a technical standpoint, the Rembrandt platform

provides developer tools for a highly scalable system to

include new data types (as shown in Fig. 1) and connect

with existing ones to present integrated data views to users.

This flexible discovery informatics platform has aided in

implementing data portals to host several other cancer

clinical data sets including those from the I-SPY stage III

breast cancer study and The Cancer Genome Atlas (TCGA;

ref. 17) project data included in the Cancer Molecular

Analysis Portal. In this respect, it is worth to point out that

the new Cancer Molecular Data portal has reutilized many of

the features available in Rembrandt to suit a more general set

of tumor sample analysis. At the sample level, GMDI and

TCGA are complementary in many levels. GMDI is a

prospective study wherein 14 institutions recruited patients

with any type of glioma giving a wide spectrum of

demographic sampling due to the geographic dispersion of

the sites. The TCGA sample collection pipeline included two

centers that had retrospective sample collections of glioblas-

toma multiforme. Thus, TCGA focused its analysis on

high-grade glioblastoma multiformes, whereas the samples

in GMDI represent all glioma grades and subtypes described

in the WHO classification, allowing for studies on the

differences of gliomas as they progress. The clinical data

obtained by the GMDI project are comprehensive, because

the study was conceived as a prospective, natural history

clinical trial, thus allowing for the collection of a wide range

of clinical data points. On the other hand, the TCGA project,

in virtue of its more focused nature, has produced more

molecular data types (methylation, sequencing, and miRNA

expression) than GMDI. However, the GMDI samples are

being used to acquire those data types, and they will be

incorporated to Rembrandt as sufficient numbers of samples

are processed.

The ultimate beneficiaries of Rembrandt are the brain

tumor patients themselves. Rembrandt is designed to bridge

the gap between biological and clinical information to help

patients receive a better, biologically oriented therapy tailored

to their specific needs. As such, we plan to incorporate new

and useful capabilities in future releases that are not available

at present time, such as the ability for researchers to

incorporate their own data to the system to compare with

the large data set already in the database. It is hoped that the

GMDI and Rembrandt will provide a much needed resource

for scientists and physicians combating brain cancer, and

ultimately other forms of cancer, for providing the data and

bioinformatics tool set that may allow the development of a

biologically and clinically significant pathologic classification

of brain tumors and help elucidate novel molecular targets for

therapy.

Availability
Rembrandt is freely available to all users at https://

caintergator.nci.nih.gov/rembrandt. The source code for

Rembrandt is also available under a nonviral cancer Biomedical

Informatics Grid license at https://gforge.nci.nih.gov/frs/

download.php/1489/rembrandt_1_0.zip. The Rembrandt caGrid

service is accessible at http://caintegrator.nci.nih.gov/wsrf-rbt/

services/cagrid/RembrandtGridService.

Web Resources
Rembrandt clinical genomics object model: http://

Rembrandt.nci.nih.gov/content/Rembrandtlfs/Rembrandt

EA1.0docs/index.htm.

Rembrandt clinical genomics data model: http://Rembrandt.

nci.nih.gov/developers/images/db_model2.jpg.

Rembrandt application: http://rembrandt-db.nci.nih.gov.

Rembrandt information site: http://rembrandt.nci.nih.gov.

webGenome: http://webgenome.nci.nih.gov/webgenome/

home.do.

GenePattern: http://www.broad.mit.edu/cancer/software/

genepattern/.

caArray: https://array.nci.nih.gov/caarray/home.action.

I-SPY trial: http://ncicb.nci.nih.gov/tools/translation_

research/ispy.

TCGA: http://cancergenome.nih.gov/.

Cancer molecular analysis portal (access to TCGA data sets):

http://cma.nci.nih.gov.
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